skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tang, Ziye"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. For vehicle routing problems, strong dual bounds on the optimal value are needed to develop scalable exact algorithms as well as to evaluate the performance of heuristics. In this work, we propose an iterative algorithm to compute dual bounds motivated by connections between decision diagrams and dynamic programming models used for pricing in branch-and-cut-and-price algorithms. We apply techniques from the decision diagram literature to generate and strengthen novel route relaxations for obtaining dual bounds without using column generation. Our approach is generic and can be applied to various vehicle routing problems in which corresponding dynamic programming models are available. We apply our framework to the traveling salesman with drone problem and show that it produces dual bounds competitive to those from the state of the art. Applied to larger problem instances in which the state-of-the-art approach does not scale, our method outperforms other bounding techniques from the literature. Funding: This work was supported by the National Science Foundation [Grant 1918102] and the Office of Naval Research [Grants N00014-18-1-2129 and N00014-21-1-2240]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2021.0170 . 
    more » « less
  2. We study the problem of chasing convex bodies online: given a sequence of convex bodies the algorithm must respond with points in an online fashion (i.e., is chosen before is revealed). The objective is to minimize the sum of distances between successive points in this sequence. Bubeck et al. (STOC 2019) gave a -competitive algorithm for this problem. We give an algorithm that is -competitive for any sequence of length . 
    more » « less